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Abstract

A fully implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification
in 2D is presented. In addition we combine a second-order fully implicit time discretisation scheme with variable step size
control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely
used fully explicit methods, with respect to CPU time and accuracy, is shown. Due to the high nonlinearity of the govern-
ing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate
approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence
behaviour.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The modelling of solidification microstructures has become an area of intense interest in recent years (e.g.
[1–5]), especially the evolution of microstructure and segregation patterns during the solidification of alloys. In
order to model and simulate crystal growth in alloys the phase-field method is one of the most popular and
powerful techniques (e.g. [6–8]). However, the nature of the phase-field models leads to coupled systems of
highly nonlinear and unsteady partial differential equations (PDEs). Typically, this complexity has led
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modellers to rely primarily on relatively simple numerical methods, however in this work we aim to demon-
strate that it is possible, and indeed advantageous, to make use of advanced numerical methods, such as adap-
tivity, implicit schemes and multigrid.

For phase-field models, in which the phase variable, /, is constant in the two phases and only varies in
the thin interface region, the use of mesh adaptivity is a natural choice. Adaptive mesh refinement was
applied to phase-field models for pure materials solidification, e.g. [9–13], and has subsequently also been
used for models of binary alloy solidification, e.g. [14–16]. This method leads to very fine mesh resolution
only in the interface region and therefore allows the use of large domains to prevent boundary effects.
Another important, and related, factor is the choice of a suitable time integration method. Widely used
methods are explicit methods such as Euler’s method (e.g. [2,3,6,8]). However, when using explicit meth-
ods a major constraint in the computation is the time-step restriction in order to assure the stability of the
scheme. Implicit methods are more expensive per step than explicit ones because intermediate approxima-
tions have to be solved from a system of nonlinear algebraic equations. However, implicit methods (e.g.
[13,15]) are important because of their superior stability properties, which allow larger time steps. Another
class of integration schemes are semi-implicit schemes which have been used before for pure material
phase-field models where the nonlinear phase equation is solved explicitly and the linear diffusion equation
is solved implicitly, see [11].

In this work we use the A-stable implicit second-order Backward Differentiation Formula (BDF2) [17] for
both nonlinear equations, which is combined with variable step size selection, to obtain an adaptive time and
space method. Especially for the simulation of dendritic growth, variable time-stepping is valuable because of
the variation in the interface velocity over time. Explicit schemes are not generally able to exploit this since the
step size selected is typically the maximum stable time step: and when mesh adaptivity is used this can be very
small.

Here we demonstrate the advantages of the implicit method by considering the isothermal case of the cou-
pled heat and solute phase-field model of Ramirez et al. [3]. These authors propose that the results of this
model are independent of the interface width, thus making this model especially attractive. This model is
an extension of the phase-field model for pure materials [18] and binary alloys [8]. The model is described
briefly in the next section before we describe, in Section 3, the proposed discretisation methods in detail. In
order for the implicit time-stepping scheme to be viable it is essential that the large systems of nonlinear alge-
braic equations, that occur at each time step, are solved as efficiently as possible. In order to achieve this a
nonlinear multigrid solver, based upon [21], has been implemented. This is demonstrated to behave almost
optimally on both uniformly and locally refined grids. Finally we compare our proposed method to other dis-
cretisation methods with respect to CPU time and accuracy by comparing total time and interface positions as
well as tip velocities. Some typical simulation results are also included.
2. Phase-field model

The phase-field model used here is a variation of the coupled thermal-solute model for the simulation
of microstructure formation in dilute binary alloys, given in [3]. In this paper we only consider the iso-
thermal case in which the model reduces to a pure solute model by fixing the thermal undercooling
and choosing an infinitely large Lewis number. The authors in [3] showed that the simulation results
for the isothermal case agree exactly with those results found by using the model given in [8]. The micro-
structure is represented by the phase variable / which divides the liquid and the solid phase by a diffuse
interface. The solid and liquid phases correspond to / ¼ 1 and / ¼ �1 respectively, and in the interface
region / varies smoothly between the bulk values. The governing equations, in dimensionless forms for
vanishing kinetic effects [3], are
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where w ¼ arctanð/y=/xÞ is the angle between the normal to the interface and the x-axis, AðwÞ ¼ 1þ � cos gw
is an anisotropy function with anisotropy strength � and mode number g. The dimensionless coupling param-
eter is given as
k ¼
eD
a2

¼ a1W 0

d0

; ð3Þ
with the chemical capillary length d0. Also, a1 ¼ 5
ffiffiffi
2
p

=8 and a2 ¼ 0:6267 [18] to simulate the kinetic free
growth with the dimensional solute diffusivity eD ¼ Ds0=W 2

0, where s0 ¼ ðd2
0=DÞa2k

3=a2
1 is a relaxation time

and W 0 ¼ d0k=a1 is a measure of the interface width [3]. The dimensionless concentration field U is given as
U ¼
2c=c1

1þk�ð1�kÞ/

� �
1� k

; ð4Þ
where c1 is the value of the concentration c far from the interface and k is the partition coefficient. The far-
field concentration c1 and the equilibrium liquidus concentration at system temperature, c0

l , are related via the
imposed solutal undercooling as
X ¼ c0
l � c1
ð1� kÞc0

l

: ð5Þ
In order to compare our simulation results with results given in [3], the scaled magnitude of the liquidus slope
is given as Mc1 ¼ 1� ð1� kÞX and the fixed undercooling as hfix ¼ �Mc1 X

1�=ð1�kÞX. The system parameters are
set to X ¼ 0:55, k ¼ 0:15, W 0 ¼ s0 ¼ 1, � ¼ 0:02 and g ¼ 4:0.

The highly nonlinear nature of these two time-dependent PDEs is clearly apparent due to the anisotropy
terms in the phase equation (1) and the solute trapping term [8] in the concentration equation (2), respectively.

3. Numerical methods

Due to the nature of the phase-field method, where the variables may change only in a small region relative
to the computational domain, adaptive mesh refinement is a natural choice and leads to a computationally
efficient method. We discretize the governing equations with a finite difference approximation based upon a
quadrilateral, non-uniform, refined mesh with equal grid spacing on each level in both directions. The equal
grid spacing is necessary in order to apply standard finite difference stencils. The adapted meshes are non-con-
forming in the sense that we allow hanging nodes [21]. We distinguish between four different types of node, see
Fig. 1; internal nodes s, boundary nodes h, hanging nodes x and interface nodes d.

In the case of a uniformly refined mesh all nodes are either internal nodes or boundary nodes. In the case of
a non-uniformly refined mesh the nodes that lie at the interface of two levels of refinement are termed as either
Fig. 1. Different type of grid nodes.
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interface nodes or hanging nodes. Interface nodes are nodes which also exist on the next coarser grid and
hanging nodes are nodes which only exist on the finer grid. This distinction is important for the understanding
of the algorithms that follow.

3.1. Spatial discretisation

For all of the computational results presented in this paper second-order finite difference schemes have been
used. Compact schemes are used for the phase equation in order to reduce the mesh anisotropy influence
[19,20]. The mesh data is stored in a quadtree data structure, as in [11,13]. Additional to the information
stored in the node list and the element tree, see [13], we also hold for each node a link to their neighbour nodes
in order to facilitate the efficient application of different, and especially higher-order, finite difference stencils.
Important for the stability of the numerical method is the fact that the interface is always in the refined region.
To ensure this, adaptive refinement is used based upon the elementwise gradient criterion
E ¼ Chlvl jr/j þ EcjrU jð Þ; ð6Þ

where hlvl is the element size on the actual refinement level and C, as well as Ec, are two user defined param-
eters, see [12]. Ec should be greater than zero to guarantee an appropriate representation of the concentration
field and not only the phase field. We found that a value for Ec of between 0.5 and 0.75 is suitable, especially in
comparison to results produced on uniform refined meshes. Two different meshes are shown in Fig. 2. On the
left-hand side we show a quarter of the domain with Ec ¼ 0:25 and on the right-hand side a quarter of the
domain with Ec ¼ 1:0. The mesh on the right-hand side shows much more refinement on the levels below
the finest level, and this is caused by the greater influence of the concentration field. The parameter C is a more
global parameter and an increase would lead to more refinement on all levels.

3.2. Time discretisation

A widely used choice, see [3,8] for example, for temporal discretisation of phase-field models such as Eqs.
(1) and (2) are explicit methods such as the forward Euler scheme. If we rewrite Eqs. (1) and (2) in operator
form
o/
ot
¼ F /ðt;/;UÞ;

oU
ot
¼ F U t;U ;/;

o/
ot

� �
; ð7Þ
where F/ and FU are nonlinear differential operators, then the explicit Euler method has the following form
/kþ1 � /k ¼ DtF /ðtk;/k;UkÞ; ð8Þ

U kþ1 � Uk ¼ DtF U tk;U k;/k;
o/
ot

� �
ð9Þ
for k ¼ 0; 1; 2; . . ..
Fig. 2. Adaptive meshes after t = 2000 for C = 1/2 and left Ec ¼ 0:25 and right Ec ¼ 1:00, the finest mesh is shaded grey.
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The implementation of the explicit Euler method based upon uniform grids is very straightforward, but for
adaptively refined meshes their exist a number of possibilities.

Algorithm 1. Explicit Euler method for adaptively refined meshes

1. Go to the finest uniform refined level
2. Solve Eqs. (8)–(9) for all internal nodes
3. Set up the values on the internal interface nodes of the next finer level by interpolating the values from

the coarser mesh
4. Go up to the next finer level and solve (8)–(9) for all internal nodes
5. IF the finest level has been reached then STOP else GOTO 3

Algorithm 1 shows the implementation used in this work for locally refined spatial meshes. The key point in
any such algorithm is the handling of the internal interfaces. The internal interfaces are treated as a Dirichlet
boundary for the finer level, with these values obtained by interpolating from the coarser level.

The finer level solution is then obtained only at the internal points. Simple injection is used for the inter-
polation of the values at the interface nodes from the coarser level, however cubic interpolation is used to
obtain Dirichlet values at the hanging nodes. This higher-order interpolation is especially needed for the con-
centration field which is not linear in the internal interface regions. An interesting observation is that to obtain
a given accuracy more refinement is needed for the explicit method than for the implicit method, even when
higher-order interpolation is used at the hanging nodes. The reason is that in the nonlinear multigrid solver,
which is described later in Section 3.4, the hanging nodes are updated at each cycle and the convergence is
therefore guaranteed at these nodes.

As already mentioned, the explicit methods suffer from the following time step restriction
Table
Maxim

Mesh

0.781
0.391
0.195
Dt 6 dh2 ð10Þ

for some constant d, where Dt is the time step and h is the minimum element size. This condition is necessary in
order to ensure the stability of the discretisation scheme, and for some nonlinear systems the constant d can be
very small, thus leading to excessively small time steps. That is, the time steps are so small that the temporal
error is substantially less than the spatial truncation errors.

Table 1 shows statistics for the maximum stable time step size for different meshes when using the explicit
Euler method. With this information the constant d in (10) may be approximated as about 0.13 to solve (1),
(2). Note however that the maximum stable time step depends not only on the mesh size but also on the model
parameters. The predicted maximum time step sizes shown in this table are computed with the same set of
model parameters as used for the majority of calculations in this paper.

In order to overcome this restriction the use of implicit time integration methods is proposed in this paper.
These methods may be designed to be unconditionally stable, which means that the time step size does not
depend on the space step size in order to ensure stability. Our interest is in finding an optimal scheme for
which it is possible to set Dt ¼ dh. The second-order Backward Difference Formula (BDF2), combined with
the described spatial discretisation, would lead to a second-order time and space method and so fulfil the
desired criterion. This is not true for second-order explicit time integration methods, such as Runge–Kutta
or the trapezoidal or midpoint rules, see [17], because the stability of these methods are also only preserved
by the condition (10). Other classes of implicit higher-order time methods can be found for example in [17]
or [26].
1
um stable time step size when using the explicit Euler method on different grid levels

size (h) Explicit Euler method

0.079–0.080
0.019–0.020
0.004–0.005
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The BDF2 method is an implicit linear 2-step method which takes the following form when solving (7):
Fig. 3
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for k > 1. The first-order implicit Euler method is typically used for the first time step (k = 1). It can be shown
that the BDF2 method is A stable, see [17], and is therefore widely used for stiff systems of differential equa-
tions, for example to simulate chemical reactions or biological phenomena. The advantage over one-step sec-
ond-order methods, such as the Crank Nicolson scheme is that only one nonlinear solve is required at each
time step. The small price that has to be paid for this computational efficiency is that the solutions from
the previous two time steps must be saved.

Fig. 3 shows a convergence study of the tip position at a fixed time, t ¼ 10:0, for the explicit Euler method
and the implicit BDF2 method for decreasing constant time step sizes. The computations are done on uni-
formly refined grids of dimension ½�100; 100�2, with an element size of h ¼ 0:39 and the initial seed radius
is chosen as R0 ¼ 44d0 � 12:1865. Due to the stability restriction, the largest possible time step for the explicit
method on this grid is Dt ¼ 0:01, whereas for the BDF2 method the time step size can be chosen, theoretically,
to be arbitrarily large. In practise there is a restriction on the maximum step size for the implicit scheme, either
due to non-convergence of the nonlinear algebraic solver or simply due to the size of temporal error. In Fig. 3
the BDF2 time step is restricted by Dt 6 0:5 due to the high nonlinearity of the problem and the choice of
model parameters. It is very clear however that the BDF2 method converges with significantly larger time
steps than the explicit Euler method and can provide comparable accuracy with much larger Dt.

In addition to Fig. 3, Table 2 shows the time steps for which the position of the interface has the same accu-
racy for the explicit and the BDF2 methods. As one can see, the BDF2 method allows Dt to be up to 80 times
larger, for the same accuracy, than the explicit method for this example.

3.3. Variable step size control

The initial conditions typically considered for this problem consist of a small region of solid at the centre of
the domain, known as the nucleus. The growth velocity of this initial nucleus is very high at the beginning of
the simulation, before the interface becomes unstable and dendritic arms begin to grow, ultimately reaching a
steady-state velocity. Consequently, an adaption of the time steps for the BDF2 method is likely to be efficient
and leads to an adaptive time and space discretisation method. The adaptive time-stepping algorithm used in
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Table 2
Comparison of the time step sizes for which the interface positions are the same for both methods on a uniform spatial grid with an
element size of h ¼ 0:39 and at a final time t ¼ 10:0

Explicit method BDF2 implicit method

Dt Position of the interface Dt Position of the interface

0.01 17.521443 0.05 17.524558
0.00125 17.540187 0.025 17.539207
0.00015625 17.542688 0.0125 17.542740
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this paper is based upon the following rule: if the estimated local temporal error Dk 6 Tol the time step is
accepted and the next time step size is increased, whereas if Dk > Tol the step is rejected and retaken with
a smaller time step. Let
r ¼ Tol
Dk

� �1=ðpþ1Þ

; ð13Þ
where p is the order of the time discretisation scheme (p = 2 for the BDF2 method and, in the first time step
p = 1 for the implicit Euler method). Then the new time step size Dtnew is given by
Dtnew ¼ minðrmax;maxðrmin; #rÞÞDtold; ð14Þ

where the minimal and the maximal time step size growth factor are rmin and rmax respectively, and # is a safety
factor, see [17]. In all computations used in this paper the variables are set to rmin ¼ 0:5, rmax ¼ 2:0 and
# ¼ 0:8.

The local error estimate is obtained by comparing the solution of the BDF2 method and the solution
obtained by using a first-order method. (In the first time step the local error is estimated by comparing the
solution /1

im using the implicit Euler method with the solution of the explicit Euler method
/1

ex ¼ /0 þ Dt0F /ð/0;U 0Þ: the local error estimator is given then as D0 ¼ 1
2
kð/1

im � /1
exÞk1Þ. In this work the

implicit Euler method is used for the first-order scheme, as derived in [17], leading to the following estimate:
Dk ¼
r

1þ r
k/kþ1 � ð1þ rÞ/k þ r/k�1k1; ð15Þ
where r is the steps size ratio Dtk=Dtk�1. Tests show that for Eqs. (1) and (2) it is sufficient to base the time step
control only on the phase variable due to the fact that the two equations are of the same type. This is different
to most thermal models for the simulation of pure material solidification, see [18], where the temperature
equation and the phase equation are of a different type, with different requirements on the time step size.
To overcome this difficulty the authors in [11] use a second-order time discretisation scheme for the temper-
ature equation and a first-order scheme for the phase equation.

Fig. 4 illustrates the progression of the time step size for t ¼ 0 . . . 2000, for different tolerances Tol in (13),
on meshes with spacing of h ¼ 0:39. One can see that a very small time step size is used right at the beginning
but that this increases rapidly over time and converges to a constant value which depends upon the choice of
Tol. In the figure the maximum stable time step size is also shown for the explicit Euler method. Compared to
the final step size of the BDF2 method with Tol = 1.2e�2 the step size of the explicit Euler method is, for
h ¼ 0:39, 45 times smaller.

3.4. Nonlinear multigrid solver

When using implicit time discretisation methods it is necessary to solve a system of nonlinear algebraic
equations at each time step. Multigrid methods are among the fastest available solvers for large sparse systems
of linear or nonlinear algebraic equations and are based upon two principles; the coarse grid principle and the
smoothing principle, see for example [21–23]. For the coarse grid correction one has to define grid transfer
operators to transfer the solution and the residual from the fine to the coarse grid, and the solution from
the coarse to the fine grid. In the examples given here bilinear interpolation is used for the coarse to fine grid
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transfers and injection is used for the fine to coarse grid transfers. For the smoothing principle a basic iteration
method for smoothing the error is used. One of the simplest possibilities is a pointwise nonlinear weighted
Jacobi smoother, which is used here for the phase equation:
/kþ1;nþ1
ij ¼ /kþ1;n

ij � x
F H

/ ð/
kþ1;n
ij ;Uk
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which follows from (11). The advantage of using a Jacobi smoother is that w in (1) has to be calculated only
once per iteration. For the concentration equation a pointwise nonlinear weighted Gauss–Seidel smoother is
used:
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For both smoothers the derivatives of the discretisation operators with respect to the system variable at each
point is needed. In order to simplify these derivatives, central difference schemes are used to approximate the
first and second derivatives in both directions, so that the derivative is zero, e.g.
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The derivative of the right-hand side of (17) with respect to /ij is therefore given as
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example [27]. The same procedure applied to the right hand-side of (19) gives
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where, for example, /x is the notation for the first derivative
o/ij

ox .
On the basis of the described smoothers and transfer operators a multigrid solver for adaptive refined

meshes has been developed based upon the Full Approximation Scheme (FAS) for resolving the nonlinearity,
see [24], and the adaptive multigrid approach of [21]. Another multigrid method for local refined meshes is the
Fast Adaptive Composite Grid method which is described in [23,25]. Note that although the smoothers (16)
and (18) have been written separately, the nonlinear system that is solved is a single system for all unknowns
/kþ1

ij and U kþ1
ij . The number of pre- and post-smooths applied is typically two, however other alternatives are

presented in Table 3. Note that the multigrid convergence rate depends on a number of factors, including: the
transfer operators; the smoother; the number of post- and pre-smooths; and also on the iteration form. Table
3 shows convergence rates for different iteration forms and different pre- and post-smoothing steps at a fixed
time and a constant time step size of Dt ¼ 0:05 on uniform grids with size h ¼ 0:78. The notation V(2,1), for
example, represents a V-cycle with 1 post- and 2 pre-smoothing steps. The convergence rate is calculated by
iterating until a residual of less than 1e�10 is reached and then the proportion of the residual of / at the pen-
ultimate and last steps is calculated, measured in the infinity-norm. The number of iterations needed to reach a
residual of less than 1e�10 is equal to the number of cycles in the Table. As one can see the V-cycle form with
2 post and 2 pre smoothing steps performed best in terms of convergence rate, number of cycles and execution
time.

A major property of the multigrid method is the h-independent convergence, which means that the conver-
gence rate does not depend on the spatial element size. As one can see in Fig. 5(a), where the residual of / is
shown at a fixed time for different mesh sizes, for both uniformly and adaptively refined meshes, the conver-
gence is of the same order and the mesh adaptivity does not affect the convergence rate even for this highly
nonlinear problem.

An implication of this is that the execution time versus the number of nodes should scale linearly, and this
optimal behaviour is indeed observed in Fig. 5(b).
3
ic of the convergence rate, number of cycles and the execution time for different types of iteration form

n form Convergence rate No. of cycles Time (s)

0.008789 5 2.3915
0.000872 4 2.4667
0.000098 3 2.3021

) 0.008788 5 3.3234
) 0.000097 3 3.1040
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4. Results

This section presents a selection of typical results for the solution of (1) and (2), concentrating mainly on
the comparison between the explicit Euler method and the implicit BDF2 time discretisation method. The fol-
lowing aspects are considered:

1. The influence of the refinement on the accuracy.
2. The influence of the choice of the time step size on the accuracy.
3. The execution times of both methods.

For validation, results are compared with those presented in [8,3]. The dendritic growth simulation is
undertaken with the model parameters given in Section 2. The only free parameter to choose is the coupling
parameter k, which depends on the choice of the diffusivity coefficient D, see (3). This parameter is set to D ¼ 2
in these simulations, whereby it follows that k ¼ 3:1913 and the capillarity length d0 ¼ 0:27696. The rectan-
gular computational domain Q is chosen as Q ¼ ½�400; 400�2 with Dirichlet boundary conditions. On the
boundaries / is set to be �1 and the concentration field U is considered to be zero. The phase field is initialised
as / ¼ � tanhðbðx2 þ y2 � R2

0ÞÞ, where R0 is the radius of the initial seed and b a constant to control the steep-
ness, and the concentration U is initialised to zero in the whole domain.
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A typical simulation result for a fourfold symmetric alloy dendrite growing in an undercooled melt is shown
in Fig. 6. The contour plots show, on the left-hand side, the phase variable and, on the right-hand side, the
concentration field at t ¼ 1800. At this time the tip velocity has reached a steady state. In those regions where
the phase variable forms a very steep interface the concentration field is more slowly varying and is only very
sharp in front of the tip. This illustrates the need for local mesh refinement, see Section 3 and Fig. 2. The influ-
ence that the adaptive refinement has on the simulation results is discussed in the next section.

In order to simulate a pure fourfold symmetry the radius of the initial solid seed is taken as R0 ¼ 14d0 in all
cases. Fig. 7 shows a study of how the radius of the initial seed influences the shape of the dendrite. If the
initial radius is chosen to be larger than R0 ¼ 28d0 then the dendrite no longer grows with a pure fourfold
symmetry.

4.1. Adaptive remeshing

In this section we compare results obtained on uniform meshes and on adaptively refined meshes and study
what influence the adaptive refinement has on different parameters for different discretisation methods. All the
results shown next are for meshes with a minimum element size of h ¼ 0:78. For the explicit Euler method a
Fig. 6. The interface shape of an alloy dendrite after t = 1800; the left and the right box show the contours of the phase variable / and the
contours of the dimensionless concentration field U, respectively.
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constant step size of Dt ¼ 0:05 was chosen, which is slightly less than the maximum stable time step, see
Table 1. For the BDF2 method the error tolerance, Tol in (13), was fixed as 1e�2.

The first test was undertaken on a smaller domain Q ¼ ½�200; 200�2 to show that the adaptive refinement
generally does not have an effect on the simulation results. To demonstrate the same accuracy for both uni-
form and adaptive refinement Fig. 8 shows the position of the tip along the x-axis as a function of time. Since
the computation of the tip velocity and the curvature depends on the position of the tip it is important to dem-
onstrate that the tip position is the same.

Fig. 8 does indeed indicate that the same results are obtained using adaptive meshes and uniform meshes
for both time integration schemes. It should be noted however that the explicit scheme requires more cautious
adaptivity than the BDF2 scheme in order to achieve these results. Specifically, for Fig. 8, values of C ¼ 2:0,
Ec ¼ 1:0 were used for the adaptivity with the explicit scheme (see (6)), whereas C ¼ 1:0, Ec ¼ 0:75 were suf-
ficient for the implicit time-stepping. Consequently the former yields a mesh of up to 81645 nodes whereas the
latter only uses 69133 nodes. These compare to a uniform mesh of 263169 nodes. The corresponding reduc-
tions in CPU time are from 9.2 h (up to t ¼ 700) to 3.9 h in the explicit case, and from 15.9 h to 3.3 h in the
implicit case. Note that it is marginally faster to use the implicit method for this mesh size but for coarser
meshes the explicit scheme may be preferable. For finer meshes, as shown below, the implicit scheme will pro-
vide significant further advantage.

For the rest of this paper only adaptively refined meshes will be considered. This is because it becomes
excessively expensive to compute on uniform meshes as h is reduced. For example, with a minimum element
size of 0.098, which is comparable to a uniform mesh with 67 million nodes, it is impossible to solve on a single
workstation.

As already indicated above, the choice of the adaptive refinement parameters have an influence on the
results in both methods. The explicit method is particularly sensitive to the refinement scheme due to the more
complicated handling of the internal interface nodes, as discussed in Section 3.2. Even if cubic interpolation is
used at the internal interfaces more refinement is needed in order to reproduce the same results as with the
implicit BDF2 method, where the interface nodes are incorporated very naturally into the multigrid solver,
see for example [21]. Table 4 shows a parameter study, and how the parameters influence the position and
the velocity of the tip after t ¼ 1800 on a domain Q ¼ ½�400; 400�2 with h ¼ 0:78.

In Table 4 the parameter Ec is held constant and the parameter C, which is global parameter and leads to
more refinement on all levels, is varied. Both methods converge to the same position but the explicit method
needs more refinement than the BDF2 method. In order to compare the results for both methods the param-
eter values that are chosen in all later studies are: C ¼ 2:0, Ec ¼ 1:0 for the explicit Euler scheme, C ¼ 1:0,
Ec ¼ 0:75 for the BDF2 method.



Table 4
Position of the tip and the tip velocity at t ¼ 1800 for different refinement parameters and different time discretisation methods

Method Parameters Position Velocity

Explicit Euler C ¼ 1=2;Ec ¼ 1:0 230.92387 0.106260
C ¼ 1:0;Ec ¼ 1:0 235.32227 0.108935
C ¼ 2:0;Ec ¼ 1:0 236.45504 0.109486

Implicit BDF2 C ¼ 1=2;Ec ¼ 0:75 234.69686 0.109041
C ¼ 1:0;Ec ¼ 0:75 236.50597 0.109649
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4.2. Parameter studies

Before reaching the final comparison in the next section one further parameter study is undertaken, con-
cerning the time step control and the multigrid solver tolerance for the BDF2 method. The simulation param-
eters are as stated in the previous section.

Table 5 shows the position of the tip and the tip velocity at t ¼ 1800 for different tolerances Tol in the step
size control. When the tolerance is small then the time steps become smaller, see Fig. 4. However, as one can
see, the difference between results computed with different tolerances are marginal but the difference in the
time step sizes are quite significant. For example the change of the tip position between the choice
Tol = 1.2e�2 and Tol = 0.75e�2 is only 0.05% but the final time step size for Tol = 1.2e�2 is 63% larger than
the final time step size when using Tol = 0.75e�2. This leads to an huge drop in the number of time steps and
so in the overall execution time.

A similar conclusion can be reached by studying the dependence of the multigrid solver tolerance Stol on
the simulation results. Table 6 shows the tip position and the tip velocity for two different solver tolerances, all
other parameters held to be the same. As one can see the solver tolerance does not influence the results sig-
nificantly, there is only a 0.018% difference in the position of the tip between both. Consequently, for subse-
quent calculations Stol = 1e�5 is chosen since the number of multigrid iterations, which depends on the
chosen solver tolerance, does have a significantly impact on the total execution time.

After studying the different parameters which could have an effect on the simulation results we come now to
a final comparison of the explicit and the implicit methods.

4.3. Comparison of the explicit Euler method and the implicit BDF2 method

A graphical comparison of a selection of results on adaptively refined meshes is shown in Fig. 9. The top
left figure shows the position of the tip of a dendrite growing along the x-axis versus time. The top right figure
is the tip velocity versus time and the bottom left graph shows the tip radius versus time. Finally the bottom
right figure shows the evolution of the time step size for the BDF2 method. All simulations are evaluated until
Table 5
Position of the tip and the tip velocity at t ¼ 1800 for different error tolerances in the time step control as well as the time step size

Tol Position Velocity Time step

1.20e�2 234.72354 0.109029 �0.49
1.00e�2 234.69686 0.109041 �0.40
0.75e�2 234.84339 0.109166 �0.30

Table 6
Position of the tip and the tip velocity for different solver tolerances after t ¼ 1800

Stol Position Velocity

1e�7 234.74028 0.109042
1e�5 234.69686 0.109041
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t ¼ 1800 where a steady-state tip velocity is reached, which is equivalent to a dimensionless time of
tD=d2

0 � 47; 000. As one can see both methods produce the same results, with the respective curves lying on
top of each other. This correlation is strengthened by a direct comparison of the steady-state results in Table 7.
The total execution time is additionally shown in this table. From Table 5 it is known that the time step at the
end of the simulation is Dt � 0:4 for the BDF2 scheme in comparison to the constant time step of Dt ¼ 0:05
necessary for stability of the explicit Euler method. In order to make the time comparison as fair as possible
therefore mesh refinement is only undertaken every 10 time steps with the explicit method, compared to each
time step in the BDF2 method.

The results clearly demonstrate that both methods produce the same simulation results. Furthermore, the
spatial mesh level with a minimum element size of h ¼ 0:78 is the first level for which the implicit BDF2
Table 7
Comparison of the position, velocity and radius of the tip on the x-axis after t ¼ 1800 and the total execution time

Position Velocity Curvature Total time (h)

Explicit Euler 236.45504 0.109486 6.034250 11.8
Implicit BDF2 236.50597 0.109649 6.004577 11.5
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method is faster than the explicit Euler method on adaptively refined meshes. However, the convergence study
of the steady-state tip velocity in the next section demonstrates that a spatial step size of at least h ¼ 0:39 is
needed to approximate the test problem considered here with sufficient accuracy. Such a decrease of the step
size has a significant impact on the total execution time for both methods but the time increase for the explicit
method is much greater than for the implicit method. This is because the stability restriction for the explicit
method means that one has to quarter the time step whenever the minimum element size is halved. Based on
the fact that, in the adaptive meshing, the number of nodes only doubles or triples every time the minimum
element size is halved, the total execution time for the explicit Euler method should go up by a factor of 8–12.
However, for the BDF2 method the execution time only increases by factor of at most 4–6 because of the var-
iable step size control.

Fig. 10 shows the execution time for both methods on meshes of minimum element size
h ¼ 1:56; 0:78; 0:39; 0:19 and 0.097. The times for the explicit method for h ¼ 0:19 and 0.097 are extrapolated
based upon an approximation of the execution times of the other step sizes h ¼ 0:78 and 0.39, in order to com-
plete the picture. It is assumed that the execution time grows by a factor of 10, although the execution time
increases from h ¼ 078 to h ¼ 0:78 by a factor of 11.9. To complete an explicit simulation on meshes with a
step size of h ¼ 0:097 would require an execution time of more than 12000 h. For the same system size the
BDF2 method needs a little more than 400 h, which is about 30 times less.
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4.4. Convergence behaviour

To complete this presentation of results, this section examines the convergence behaviour of the simula-
tions. All subsequent simulations are performed with the BDF2 method on meshes with a minimum element
size of less than or equal to h ¼ 0:78. Fig. 11 shows the progression of the tip position and the tip velocity over
time for different maximum refinement levels. Both parameters converge as the meshes become finer. Only the
results computed on meshes with a step size of h ¼ 0:78 stand out at this graph resolution, thus demonstrating
that a finer grid spacing is essential for accurate predictions.

A convergence study of the dimensionless steady-state tip velocity as a function of the minimum element
size, is shown in Fig. 12. The computational results converge when the step size becomes sufficiently small
and show a very good agreement with results published in [8,3].
5. Conclusions

This paper presents an efficient fully adaptive numerical scheme for the simulation of dendritic alloy growth
in a undercooled melt in two dimensions. The phase-field model used to demonstrate the method is a variation
of the coupled thermal-solute model, published in [3], for the simulation of isothermal growth. In order to
solve efficiently on meshes with a very fine spatial resolution adaptive meshing and a second-order implicit
time discretisation scheme are used and coupled with variable time step size control. This combination reduces
the execution time drastically compared to explicit time integration methods since their is no artificial stability
restriction imposed on the time step size, see Fig. 10. To solve the intermediate approximations in the implicit
BDF2 method a robust multigrid solver is essential, the FAS scheme applied on the adaptive grids in this work
shows excellent h-independent convergence rates.

The convergence of the steady-state tip velocity is studied and shows a very good agreement with results
published in [3,8]. By using the fully implicit approach it has been possible to compute efficiently using min-
imum element sizes of less than 0.1. In order to achieve this accuracy on uniform meshes one would need lat-
tice with 213 � 213 nodes, and the use of explicit time-stepping would not be practical.

This is the first paper to couple the use of adaptivity in space and time with implicit methods and the use of
multigrid solvers for the simulation of solidification using Phase-field models. Numerous other phase-field
models exist and further studies may be undertaken, including the application of this numerical method to
the fully coupled thermal-solute model, which exhibits diffusion effects on different time scales, thus making
the potential advantages of the proposed approach even greater.
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